QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (2024)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (1)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (2)

Achieving the lowest possible noise and electron temperature in quantum circuits

Get the Spec SheetRequest a Quote

QFilter-II is your compact solution for advanced multi-stage low-pass filtering. It’s specifically designed to reject noise and maintain millikelvin electron temperatures across 24 signal lines. This makes it an ideal fit for your quantum electronics devices and other sensitive cryogenic circuits. Originating from extensive research at Harvard University and the University of Copenhagen, QFilter is now a trusted tool in over 100 research groups worldwide.

Advanced Filtering and Thermalization Below 1 Kelvin

At millikelvin temperatures, ensuring cold electrons in signal lines is a challenge. QFilter-II addresses this by cooling electrons and filtering out electrical noise ranging from about 65 kHz to tens of GHz. Constructed from gold-coated high-conductivity copper and mountable on your cryostat’s mixing chamber plate, it is a key component for any cryogenic setup.

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (3)

24 Line Filter Configuration with Optimal Performance

Our standard configuration offers two filtering banks (low-frequency and radio frequency) with 25-pin micro-D connectors. These banks are connected in series using a shielded jumper cable. The compact, non-magnetic design allows for direct mounting on the mixing chamber plate, compatible with most fridge manufacturers such as Bluefors fridges and the Oxford Instrument Proteox shown below.

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (4)

Well-Engineered Filtering Banks for Low Temperatures and High Signal Integrity

QFilter-II features two low-pass filtering banks in series: a low-frequency (65 kHz) filter with RC circuits and a high-frequency (RF, 225 MHz) filter with LC circuits. Each bank is crafted with several individually shielded filter stages. Signal lines support 150V voltages (below 4 Kelvin, max. 6mA for RC, 10mA for RF) and provide >10GΩ isolation below 4K to ground and other lines. Individual low-frequency filter lines can be shortened upon request, allowing for higher signal currents e.g. used for current biasing flux-lines.

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (5)

Scalability for High Channel Demands

For systems requiring more than 24 lines, QFilters can be efficiently stacked (top image) saving space on the mixing chamber plate or connected in series (bottom image) removing the need for jumper cables. This flexibility allows for configurations like dual RC or dual RF filters, catering to diverse setup requirements.

Get the Full QFilter-II Spec Sheet

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (6)

Key Features

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (7)

  • Effective Electron Temperature Cooling: Reduces electron temperature through filtering to typically 5-15 mK above the mixing chamber.
  • Advanced Low-Pass Filtering: Dual filter boards (RC and RF) with 24 channels each for strong noise rejection.
  • Effortless Integration: Easily mountable on standard mixing chamber plates of dilution refrigerators with 20 mm x 20 mm pitch.
  • Robust and Scalable Design: Sturdy build, suitable for stacking to accommodate higher channel counts.
  • Optimal Thermal and Electrical Performance: Thermal anchoring to gold-plated copper brackets and 2GΩ isolation per channel.
  • High Magnetic Field Compatibility: Non-magnetic, shielded components including titanium connectors for reliable operation in various environments.
  • Connector Compatibility: Equipped with 25-pin microD connectors used in most dilution refrigerators.
  • Compact and Space-Efficient: Dimensions of 30 mm x 47 mm x 70 mm for space-sensitive setups.
  • Versatile Configuration: Suitable for 48, 96, or more lines, with options for stacking or in-series connections.

Benefits

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (8)

Lowers Electron Temperature

QFilter effectively reduces electron temperatures to typically 5-15 mK above the mixing chamber, ideal for sensitive experiments.

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (9)

Rejects Electronic Noise

QFilter including both low frequency and RF filters transmits below 65 kHz and attenuates from 10 MHz to 20 GHz by more than -60dB.

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (10)

High Magnetic Field Resilience

Designed with non-magnetic, shielded components, QFilter excels in high magnetic fields, offering dependable performance.

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (11)

Flexible and Scalable Design

Adaptable for filtering 48, 96, or more lines, QFilter’s scalable design meets the demands of growing research projects.

Additional Resources

Scientific Publications

Electron Thermometry

Read More

Scientific Publications

Low-temperature benchmarking of qubit control wires by primary electron thermometry

Read More

Brochures

QFilter-II: Compact Multi-Stage Low-Pass Filter

Read More

Blog

Feedback-Driven Quantum Stabilization: Two-Axis Real-Time Control of Spin Qubits

Read More

Scientific Publications

Electron Thermometry

Read More

Scientific Publications

Low-temperature benchmarking of qubit control wires by primary electron thermometry

Read More

Brochures

QFilter-II: Compact Multi-Stage Low-Pass Filter

Read More

Blog

Feedback-Driven Quantum Stabilization: Two-Axis Real-Time Control of Spin Qubits

Read More

Customers’ Success Using QFilter

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (12)

Superfluid response of an atomically thin gate-tuned van der Waals superconductor

Apr 2023

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (13)

Josephson diode effect from Cooper pair momentum in a topological semimetal

Aug 2022

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (14)

Isospin order in superconducting magic-angle twisted trilayer graphene

Feb 2022

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (15)

Spin-orbit–driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene

Jan 2022

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (16)

Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires

Sep 2020

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (17)

Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle

Sep 2019

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (19)

Robust anomalous metallic states and vestiges of self-duality in two-dimensional granular In-InOx composites

Mar 2021

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (20)

Controlled dc Monitoring of a Superconducting Qubit

Feb 2020

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (21)

Ultra-fast electronic pulse control at cryogenic temperatures

May 2019

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (22)

Precision measurement of the quantized anomalous Hall resistance at zero magnetic field

Feb 2018

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (23)

Spin-degeneracy breaking and parity transitions in three-terminal Josephson junctions

Jul 2023

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (24)

Flip-chip-based fast inductive parity readout of a planar superconducting island

Jul 2023

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (25)

Demonstration of nonlocal Josephson effect in Andreev molecules

Jun 2023

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (26)

Sweet-spot operation of a germanium hole spin qubit with highly anisotropic noise sensitivity

May 2023

Why Leading Experts
Worldwide Choose
Quantum Machines

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (27)

Disentangling Losses in Tantalum Superconducting Circuits

“QM’s chip packaging solutions are exquisite pieces of engineering that have enhanced our resonator Q-factors to as much as 200 million. It is clearly a very highly engineered product that I’m sure will be widely adopted in the field.”

Check case study>>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (28)

PhD Student, Kevin D CrowleyHouck Lab, Princeton University

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (29)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (30)

iSWAP with multiplexed readout​ in 10 lines of QUA code​

We were extremely surprised by theflexibilitythat OPX offers and by howmuch easier it makes ourexperiments. Moreover, OPX providesextreme speed-ups. No morefrustration due to long waiting timesfor unwanted results!

See case study>>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (31)

Prof. Tse-Ming ChenNational Cheng Kung University, Taiwan

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (32)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (33)

A partner you can trust

”QM's control electronics provide the best real-time features along with an intuitive and well-documented programming interface. At TII, we successfully controlled a 25-q chip and conducted multiplexed characterization of all qubits using QM’s OPX and Octave. What we appreciate most, however, is the QM’s unwavering support and commitment to helping us achieve our targets, even going so far as to send some of their best scientists when needed.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (34)

Alvaro OrgazLead Quantum Computing Control, TII

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (35)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (36)

Substantially reducing coding complexity and time to results

“OPX has been a powerful enabler in our lab, helping us quickly characterize the performance of our recently discovered qubits.The hardware removes time wasted in uploading and waiting during pulse programming.QUA has substantially reduced the complexity of writing quantum protocols, allowing us to code dynamical decoupling and RB sequences in just a few lines. It remarkably saves our time in optimizing the processes and visualizing the results, allowing us to focus more on understanding the physics of our new qubits.” See case study >>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (37)

Prof. Dafei JinAssociate Prof., Dep. of Physics & Astronomy, University of Notre Dame

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (38)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (39)

RT Bayesian estimation for drifts mitigation and improved coherence time

“The OPX’s fast feedback and unique real-time processing capabilities were critical for our experiment.Combining these with the OPX’s intuitive programming and QM’s state-of-the-art cryogenic electronics allowed us to do something that we have dreamt of doing for years.”

See case study >>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (40)

Prof. Ferdinand KuemmethProfessor at Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Denmark

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (41)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (42)

Innovative engineering and higher research throughput

“QCage integrates seamlessly into our workflow of preparing and loading QPUs and supports higher throughput in our lab. Our research directly benefits from QCage's innovative design and engineering.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (43)

Prof. Javad ShabaniNew York University

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (44)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (45)

Q-factors as high as 200 million

“QM's chip packaging solutions are exquisite pieces of engineering that have enhanced our resonator Q-factors to as much as 200 million. It is clearly a very highly engineered product that I am sure will be widely adopted in our field.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (46)

Kevin CrowleyHouck Lab, Princeton University

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (47)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (48)

Saved two years of development

“Developing a functional qubit control electronic system absorbs a PhD-student full time at least for two years. QM’S Quantum Orchestration Platform allowed us set up experiments for full qubit characterization in 2-3 days with an undergraduate summer school student.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (49)

Prof. Gerhard KirchmairUniversity of Innsbruck

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (50)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (51)

The QOP dramatically expedites research

“We are very pleased with the Quantum Orchestration Platform (QOP) control solution. It’s remarkably easy to use, reliable, and flexible, supporting our advanced quantum research needs. The QOP dramatically expedites our research. The Quantum Machines customer success team has been instrumental in addressing all our needs to help us to maximize the full potential of the solution. We already use two systems and strongly recommend it.”

See case study>>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (52)

Prof. Eli Levenson-FalkUniversity of Southern California

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (53)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (54)

Revolutionizing spin qubit control, all in one box

“The quantum orchestration platform (QOP) platform completely changed the way we control semiconductor quantum dot spin qubits. Key qubit control schemes we previously developed individually using time-consuming hardware description languages are now easily implemented in one box.”

See case study>>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (55)

Prof. Dohum KimSeoul National University

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (56)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (57)

Simplified lab workflow and faster runtimes

“Replacing three devices with one synchronized, orchestrated machine tremendously simplified lab workflow. Now our pulse sequences run in a fraction of the time of any other device combo. Plus, we can “talk” to the FPGA in human-speak, to run real-time calculations that were too complicated before! Along with the yoga-level.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (58)

Prof. Amit FinklerWeizmann Institute of Science

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (59)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (60)

This system will revolutionize our space

“The first time I was introduced to Quantum Machines, It surprised me how people were getting so excited about it. Only later did I realize, it was like explaining the value of a Laser before it existed, and all you knew are light bulbs. Today I truly believe that these systems will revolutionize our space.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (61)

Prof. Barak DayanWeizmann Institute of Science

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (62)

Why Leading Experts
Worldwide Choose
Quantum Machines

Disentangling Losses in Tantalum Superconducting Circuits

“QM’s chip packaging solutions are exquisite pieces of engineering that have enhanced our resonator Q-factors to as much as 200 million. It is clearly a very highly engineered product that I’m sure will be widely adopted in the field.”

Check case study>>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (63)

PhD Student, Kevin D CrowleyHouck Lab, Princeton University

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (64)

iSWAP with multiplexed readout​ in 10 lines of QUA code​

We were extremely surprised by theflexibilitythat OPX offers and by howmuch easier it makes ourexperiments. Moreover, OPX providesextreme speed-ups. No morefrustration due to long waiting timesfor unwanted results!

See case study>>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (65)

Prof. Tse-Ming ChenNational Cheng Kung University, Taiwan

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (66)

A partner you can trust

”QM's control electronics provide the best real-time features along with an intuitive and well-documented programming interface. At TII, we successfully controlled a 25-q chip and conducted multiplexed characterization of all qubits using QM’s OPX and Octave. What we appreciate most, however, is the QM’s unwavering support and commitment to helping us achieve our targets, even going so far as to send some of their best scientists when needed.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (67)

Alvaro OrgazLead Quantum Computing Control, TII

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (68)

Substantially reducing coding complexity and time to results

“OPX has been a powerful enabler in our lab, helping us quickly characterize the performance of our recently discovered qubits.The hardware removes time wasted in uploading and waiting during pulse programming.QUA has substantially reduced the complexity of writing quantum protocols, allowing us to code dynamical decoupling and RB sequences in just a few lines. It remarkably saves our time in optimizing the processes and visualizing the results, allowing us to focus more on understanding the physics of our new qubits.” See case study >>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (69)

Prof. Dafei JinAssociate Prof., Dep. of Physics & Astronomy, University of Notre Dame

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (70)

RT Bayesian estimation for drifts mitigation and improved coherence time

“The OPX’s fast feedback and unique real-time processing capabilities were critical for our experiment.Combining these with the OPX’s intuitive programming and QM’s state-of-the-art cryogenic electronics allowed us to do something that we have dreamt of doing for years.”

See case study >>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (71)

Prof. Ferdinand KuemmethProfessor at Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Denmark

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (72)

Innovative engineering and higher research throughput

“QCage integrates seamlessly into our workflow of preparing and loading QPUs and supports higher throughput in our lab. Our research directly benefits from QCage's innovative design and engineering.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (73)

Prof. Javad ShabaniNew York University

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (74)

Q-factors as high as 200 million

“QM's chip packaging solutions are exquisite pieces of engineering that have enhanced our resonator Q-factors to as much as 200 million. It is clearly a very highly engineered product that I am sure will be widely adopted in our field.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (75)

Kevin CrowleyHouck Lab, Princeton University

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (76)

Saved two years of development

“Developing a functional qubit control electronic system absorbs a PhD-student full time at least for two years. QM’S Quantum Orchestration Platform allowed us set up experiments for full qubit characterization in 2-3 days with an undergraduate summer school student.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (77)

Prof. Gerhard KirchmairUniversity of Innsbruck

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (78)

The QOP dramatically expedites research

“We are very pleased with the Quantum Orchestration Platform (QOP) control solution. It’s remarkably easy to use, reliable, and flexible, supporting our advanced quantum research needs. The QOP dramatically expedites our research. The Quantum Machines customer success team has been instrumental in addressing all our needs to help us to maximize the full potential of the solution. We already use two systems and strongly recommend it.”

See case study>>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (79)

Prof. Eli Levenson-FalkUniversity of Southern California

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (80)

Revolutionizing spin qubit control, all in one box

“The quantum orchestration platform (QOP) platform completely changed the way we control semiconductor quantum dot spin qubits. Key qubit control schemes we previously developed individually using time-consuming hardware description languages are now easily implemented in one box.”

See case study>>

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (81)

Prof. Dohum KimSeoul National University

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (82)

Simplified lab workflow and faster runtimes

“Replacing three devices with one synchronized, orchestrated machine tremendously simplified lab workflow. Now our pulse sequences run in a fraction of the time of any other device combo. Plus, we can “talk” to the FPGA in human-speak, to run real-time calculations that were too complicated before! Along with the yoga-level.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (83)

Prof. Amit FinklerWeizmann Institute of Science

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (84)

This system will revolutionize our space

“The first time I was introduced to Quantum Machines, It surprised me how people were getting so excited about it. Only later did I realize, it was like explaining the value of a Laser before it existed, and all you knew are light bulbs. Today I truly believe that these systems will revolutionize our space.”

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (85)

Prof. Barak DayanWeizmann Institute of Science

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (86)

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (87)

Disentangling Losses in Tantalum Superconducting Circuits

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (88)

iSWAP with multiplexed readout​ in 10 lines of QUA code​

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (89)

A partner you can trust

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (90)

Substantially reducing coding complexity and time to results

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (91)

RT Bayesian estimation for drifts mitigation and improved coherence time

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (92)

Innovative engineering and higher research throughput

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (93)

Q-factors as high as 200 million

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (94)

Saved two years of development

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (95)

The QOP dramatically expedites research

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (96)

Revolutionizing spin qubit control, all in one box

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (97)

Simplified lab workflow and faster runtimes

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (98)

This system will revolutionize our space

More Products

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (99)

OPX1000

A state-of-the-art controller designed for large-scale quantum computers.

Learn More

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (100)

QSwitch

A versatile low-frequency signal routing box with 240 software-controlled relays.

Learn More

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (101)

QDAC-II Compact

An extremely stable, low-noise, 24-channel, single rack unit DAC.

Learn More

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (102)

QBox

Reliable 24-channel fully shielded Fischer connector to BNC breakout box, with sample protection.

Learn More

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (103)

Octave

Auto-calibrated IQ mixing and local oscillator system, for signals up- and down- conversion, extending the OPX+ range to 18GHz.

Learn More

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (104)

OPX+

FPGA-based controller for real-time quantum sequences, offering the lowest analog feedback latency and the shortest runtimes.

Learn More

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (105)

QBoard-II

A modular, PCB-based sample holder system for low-temperature spin-qubit chips, general transport experiments, and superconducting circuits.

Learn More

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (106)

QCage

Sample holder for microwave resonators-based quantum devices, allowing high-fidelity operation of tens of qubits up to 18 GHz.

Learn More

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (107)

QDAC-II

Ultra-low-noise 24-channel DAC, up to 25-bit resolution and 1MS/s, for DC and low-frequency control.

Learn More

Accelerate the Realization
of Practical Quantum Computing

QFilter-II: Compact Cryogenic Low-Pass Filter - Quantum Machines (2024)

References

Top Articles
Latest Posts
Article information

Author: Eusebia Nader

Last Updated:

Views: 6080

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Eusebia Nader

Birthday: 1994-11-11

Address: Apt. 721 977 Ebert Meadows, Jereville, GA 73618-6603

Phone: +2316203969400

Job: International Farming Consultant

Hobby: Reading, Photography, Shooting, Singing, Magic, Kayaking, Mushroom hunting

Introduction: My name is Eusebia Nader, I am a encouraging, brainy, lively, nice, famous, healthy, clever person who loves writing and wants to share my knowledge and understanding with you.