Multiscale simulations of complex systems by learning their effective dynamics (2024)

References

  1. Rackovsky, S. & Scheraga, H. A. The structure of protein dynamic space. Proc. Natl Acad. Sci. USA 117, 19938–19942 (2020).

    Article Google Scholar

  2. Gilmour, D., Rembold, M. & Leptin, M. From morphogen to morphogenesis and back. Nature 541, 311–320 (2017).

    Article Google Scholar

  3. Robinson, P. A., Rennie, C. J., Rowe, D. L., O’Connor, S. C. & Gordon, E. Multiscale brain modelling. Philos. Trans. R. Soc. B 360, 1043–1050 (2005).

    Article Google Scholar

  4. Council, N. R. A National Strategy for Advancing Climate Modeling (National Academies Press, 2012).

  5. Mahadevan, A. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8, 161–184 (2016).

    Article Google Scholar

  6. Bellomo, N. & Dogbe, C. On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53, 409–463 (2011).

    Article MathSciNet MATH Google Scholar

  7. Lee, E. H., Hsin, J., Sotomayor, M., Comellas, G. & Schulten, K. Discovery through the computational microscope. Structure 17, 1295–1306 (2009).

    Article Google Scholar

  8. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).

    Article Google Scholar

  9. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article Google Scholar

  10. Kevrekidis, I. G. et al. Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1, 715–762 (2003).

    Article MathSciNet MATH Google Scholar

  11. Weinan, E. & Engquist, B. et al. The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003).

    Article MathSciNet MATH Google Scholar

  12. Kevrekidis, I. G., Gear, C. W. & Hummer, G. Equation-free: the computer-aided analysis of complex multiscale systems. AIChE J. 50, 1346–1355 (2004).

    Article Google Scholar

  13. Laing, C. R., Frewen, T. & Kevrekidis, I. G. Reduced models for binocular rivalry. J. Comput. Neurosci. 28, 459–476 (2010).

    Article MathSciNet Google Scholar

  14. Bar-Sinai, Y., Hoyer, S., Hickey, J. & Brenner, M. P. Learning data-driven discretizations for partial differential equations. Proc. Natl Acad. Sci. USA 116, 15344–15349 (2019).

    Article MathSciNet MATH Google Scholar

  15. Weinan, E., Li, X. & Vanden-Eijnden, E. in Multiscale Modelling and Simulation (eds Attinger, S. & Koumoutsakos, P.) 3–21 (Springer, 2004).

  16. Weinan, E., Engquist, B., Li, X., Ren, W. & Vanden-Eijnden, E. Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2, 367–450 (2007).

    MathSciNet MATH Google Scholar

  17. Tao, M., Owhadi, H. & Marsden, J. E. Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul. 8, 1269–1324 (2010).

    Article MathSciNet MATH Google Scholar

  18. Linot, A. J. & Graham, M. D. Deep learning to discover and predict dynamics on an inertial manifold. Phys. Rev. E 101, 062209 (2020).

    Article MathSciNet Google Scholar

  19. Robinson, J. C. Inertial manifolds for the Kuramoto–Sivashinsky equation. Phys. Lett. A 184, 190–193 (1994).

    Article MathSciNet MATH Google Scholar

  20. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article Google Scholar

  21. Brunton, S. L., Noack, B. R. & Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508 (2019).

    Article MATH Google Scholar

  22. Lusch, B., Kutz, J. N. & Brunton, S. L. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9, 4950 (2018).

    Article Google Scholar

  23. Geneva, N. & Zabaras, N. Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks. J. Comput. Phys. 403, 109056 (2020).

    Article MathSciNet MATH Google Scholar

  24. Milano, M. & Koumoutsakos, P. Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182, 1–26 (2002).

    Article MATH Google Scholar

  25. Wehmeyer, C. & Noé, F. Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 148, 241703 (2018).

    Article Google Scholar

  26. Bhatia, H. et al. Machine-learning-based dynamic-importance sampling for adaptive multiscale simulations. Nat. Mach. Intell. 3, 401–409 (2021).

    Article Google Scholar

  27. Chung, J. et al. A recurrent latent variable model for sequential data. Adv. Neural Inf. Process. Syst. 28, 2980–2988 (2015).

    Google Scholar

  28. Vlachas, P. R. et al. Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics. Neural Netw. 126, 191–217 (2020).

    Article Google Scholar

  29. Gonzalez, F. J. & Balajewicz, M. Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems. Preprint at https://arxiv.org/abs/1808.01346 (2018).

  30. Maulik, R., Lusch, B. & Balaprakash, P. Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders. Phys. Fluids 33, 037106 (2021).

    Article Google Scholar

  31. Hasegawa, K., f*ckami, K., Murata, T. & f*ckagata, K. Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes. Theor. Comput. Fluid Dyn. 34, 367–383 (2020).

    Article MathSciNet Google Scholar

  32. Lee, S., Kooshkbaghi, M., Spiliotis, K., Siettos, C. I. & Kevrekidis, I. G. Coarse-scale PDEs from fine-scale observations via machine learning. Chaos 30, 013141 (2020).

    Article MathSciNet Google Scholar

  33. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article Google Scholar

  34. Bishop, C. M. Mixture Density Networks Technical Report NCRG/97/004 (Neural Computing Research Group, Aston University, 1994).

  35. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article Google Scholar

  36. Werbos, P. J. Generalization of backpropagation with application to a recurrent gas market model. Neural Netw. 1, 339–356 (1988).

    Article Google Scholar

  37. Hernández, C. X., Wayment-Steele, H. K., Sultan, M. M., Husic, B. E. & Pande, V. S. Variational encoding of complex dynamics. Phys. Rev. E 97, 062412 (2018).

    Article Google Scholar

  38. Sultan, M. M., Wayment-Steele, H. K. & Pande, V. S. Transferable neural networks for enhanced sampling of protein dynamics. J. Chem. Theory Comput. 14, 1887–1894 (2018).

    Article Google Scholar

  39. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proc. (eds Bengio, Y. & LeCun, Y.) 1-15 (2015).

  40. Vlachas, P. R., Zavadlav, J., Praprotnik, M. & Koumoutsakos, P. Accelerated simulations of molecular systems through learning of their effective dynamics. J. Chem. Theory Comput. 18, 538–549 (2021).

    Article Google Scholar

  41. FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961).

    Article Google Scholar

  42. Nagumo, J., Arimoto, S. & Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962).

    Article Google Scholar

  43. Karlin, I. V., Ansumali, S., Frouzakis, C. E. & Chikatamarla, S. S. Elements of the lattice Boltzmann method I: Linear advection equation. Commun. Comput. Phys. 1, 616–655 (2006).

    MATH Google Scholar

  44. Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett.120, 024102 (2018).

    Article Google Scholar

  45. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).

    Article MathSciNet MATH Google Scholar

  46. Kuramoto, Y. Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. Suppl. 64, 346–367 (1978).

    Article Google Scholar

  47. Sivashinsky, G. I. Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations. Acta Astronaut. 4, 1177–1206 (1977).

    Article MathSciNet MATH Google Scholar

  48. Cvitanović, P., Davidchack, R. L. & Siminos, E. On the state space geometry of the Kuramoto–Sivashinsky flow in a periodic domain. SIAM J. Appl. Dyn. Syst. 9, 1–33 (2010).

    Article MathSciNet MATH Google Scholar

  49. Kassam, A. & Trefethen, L. Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005).

    Article MathSciNet MATH Google Scholar

  50. Zdravkovich, M. Flow Around Circular Cylinders Volume 1: Fundamentals (Oxford University Press, 1997).

  51. Rossinelli, D. et al. MRAG-I2D: multi-resolution adapted grids for remeshed vortex methods on multicore architectures. J. Comput. Phys. 288, 1–18 (2015).

    Article MathSciNet MATH Google Scholar

  52. Bost, C., Cottet, G.-H. & Maitre, E. Convergence analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid. SIAM J. Numer. Anal. 48, 1313–1337 (2010).

    Article MathSciNet MATH Google Scholar

  53. Taira, K. et al. Modal analysis of fluid flows: applications and outlook. AIAA J. 58, 998–1022 (2020).

    Article Google Scholar

Download references

Multiscale simulations of complex systems by learning their effective dynamics (2024)

References

Top Articles
Latest Posts
Article information

Author: Eusebia Nader

Last Updated:

Views: 6480

Rating: 5 / 5 (80 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Eusebia Nader

Birthday: 1994-11-11

Address: Apt. 721 977 Ebert Meadows, Jereville, GA 73618-6603

Phone: +2316203969400

Job: International Farming Consultant

Hobby: Reading, Photography, Shooting, Singing, Magic, Kayaking, Mushroom hunting

Introduction: My name is Eusebia Nader, I am a encouraging, brainy, lively, nice, famous, healthy, clever person who loves writing and wants to share my knowledge and understanding with you.